Dean BentonCategoriesBlog Promo other business

Using Vuemotion to maximise on field athletic performance

Dean Benton

The Era of Rapid Insights with AI Gait Analysis

Can you explain why video analysis is used to assess various aspects of running mechanics?

Primarily to assess the qualitative aspects of all forms of running, which could be acceleration, deceleration, max speed, and change of direction (COD). Film as a means of visual feedback has been around for a long time. Although, it took a long time for coaches 50 years ago to access it. However, compared to 30 years ago, it is simply more available – instantly available of course. iPads and iPhones are a compelling form of feedback when working with athletes in very small groups. I would argue that it is too relied upon by younger coaches. It is important to develop observation skills in real-time. Ultimately, a well-trained coaching eye, experience, and judgment are still required to interpret video and apply it to the practical environment. What can be heard, seen, or sensed, still largely cannot be measured. In many ways, it is better initially to learn how to coach without the use of technology. Although, used judiciously video is a very powerful tool.

Now with Vuemotion’s AI gait analysis, we can have video analysed in 24 hours. It was only 20-25 years ago this information took biomechanists about a week to get the same information back to athletics coaches. Although, we now have a situation presently where we are drowning in information, but devoid of wisdom in how to apply it – particularly in a team sport setting. Mainly because it is so easy and seductive to collect this information. However, how is it interpreted? Used in programming and ultimately coached?

Decoding Metrics for Speed and Acceleration

ALTIS Kinogram Method and Beyond

When evaluating max velocity and acceleration what specific metrics or patterns do you look for in the data?

I think the ALTIS Kinogram method is excellent. It can have some relevance to field sports. Although, it is only descriptive in nature and stops short of detailing the ‘reason’ and ‘correction’ for errors. The Kinogram method is valuable for describing linear max speed, but we know it doesn’t reference acceleration and deceleration, which form a significant part of field sport running.

The VueMotion 20m fly and 20m acceleration offer excellent insights into the direct descriptors such as time, speed, stride length, stride frequency, and contact/flight time. The 2-D kinematic analysis also provides a valuable understanding of how a player runs. Acceleration is about what you do on the ground, so I look at how a player does this. Max speed is about what you do in the air, so considering how someone repositions limbs preparing for the ground, is very insightful.


Athletics has been assessing gait for years. This provides a good guide for us. However, field sport athletes do run differently and are often heavier than track athletes. This does influence stride length, stride frequency, and contact/flight time parameters, but the art is knowing how to interpret these differences.


Optimizing On-Field Performance with Video Feedback

How do you tailor running gait analysis to address rehab needs for injured players? What role does technology play in the process?

Depending on the injury, rehab is where significant performance gains can made. If gait analysis is made part of the return-to-run process it can offer tremendous improvements in objective decision-making when a player is ready to return to team training. We must remember that gait is the foundation of function. We can only infer an athlete’s capabilities from 1-dimensional force plates and Nord boards etc. If we revert to the well-established max speed and COD deterministic models by Dr. Warren Young, they underline the importance of reactive leg strength. With the Prepared to Play Triple Hop Test, we can now measure reactive strength in a much more applied way that takes into vertical, anterior-posterior, and mediolateral forces. Therefore, asymmetries, dysfunction, and lack of coordination with hopping are also observed in running-based tests. Namely through differences in stride length, stride frequency, contact times, and of course, kinematics. Having a focus on the process of ‘how’ a player regains running function is more important than a player’s result. Look after the process the product looks after itself.


Collaborating for Comprehensive Training Plans


In terms of performance enhancement, how do you leverage video feedback to fine-tune running mechanics and optimize players’ on-field speed, acceleration, and deceleration?

I would only use video feedback in a very small group – when I had time. Deceleration is getting a lot of attention of late. In my opinion, it is being complicated and looked at in a reductionist fashion. A discrete deceleration rarely happens in sports in isolation. However, acceleration and a quick transition to reacceleration are much more common. This should greatly influence how we train, teach, and test deceleration. If we simply look at deceleration as a mirror opposite to acceleration, then it is easy to see what are appropriate techniques for both qualities.


With the data obtained from video analysis, how do you collaborate with other professionals like physiotherapists and strength coaches to design comprehensive training plans?

Your average professional knows how to fix problems (retrospectively). The very smart professional prevents problems before they occur. Research and experience show a clear connection between running techniques and common injuries. Frans Bosch wrote an outstanding article on the relationship of injury and running technique in 2015. We can now measure these parameters very easily in our own training environment. As such, using gait analysis to 1. assess injury risk; 2. enhance running performance directly; 3. guide rehabilitation; and, 4. influence how running can be enhanced directly via allied programming.

Integrating Vuemotion for Australian Rules Football

What advice would you give to fellow coaches and practitioners looking to integrate Vuemotion analysis into their approach for enhancing player performance in Australian Rules football?

Not to trivialize the severity of contact in AFL, which can be as severe as any football-rugby code at times. However, it doesn’t have the same amount of contact as the rugby codes. Therefore, this should then influence strength training to be slightly less orthodox and be more about enhancing running performance. Depending on the position played, AFL demands all forms of running (acceleration, deceleration, max speed, and COD). If we accept this, what influences these forms of running? How can they be enhanced? In particular, within the limited time made available. Opportunities to enhance running performance ‘directly’ with players in full training are limited. However, there are numerous opportunities and methods to enhance running performance ‘in-directly’. Some are flexibility and gym-based exercises – namely specific plyometrics, reflex strength training, and functional hip exercises.

We know max speed occurs in training and matches, but not always in absolute terms in relation to a player’s max speed PB. However, depending on the position played, AFL players do spend meaningful time at very high and high-speed running where mechanical efficiency is a huge advantage. So, if we see improving mechanical efficiency as advantageous how do we go about it?

We can’t escape that running speed is determined by stride length and stride frequency. Measuring a player’s leg length will tell us what their stride length should be theoretically. This will inform if they are within, or outside norms associated with speed targets you desire them to attain. For example, some players might have a disproportionally low stride frequency, which is often associated with overstriding. Conversely, some players might be overly dependent on stride frequency (human sewing machines) and not apply enough effective force to attain a desired speed or accelerate to speed. As such, judiciously knowing what plyometrics, what flexibility, and what running drills can correct these outliers can make a big difference in a short period of time – both in terms of performance and risk mitigation.


Bosch, F., & IJzerman, J. (2015). Running mechanics in injury prevention and performance. In Sports Injury Prevention and Rehabilitation (pp. 106-120). Routledge.


 For Video demo’s Check out Prepare to Play Instagram

Dean Benton: Sprint running for football codes | Prepare Like a Pro